3.590 \(\int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))} \, dx\)

Optimal. Leaf size=300 \[ -\frac {(a+b) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {(a+b) \tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {(a-b) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {(a-b) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 b^{9/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{a^{7/2} d \left (a^2+b^2\right )}+\frac {2 \left (a^2-b^2\right )}{a^3 d \sqrt {\tan (c+d x)}}-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)} \]

[Out]

-2*b^(9/2)*arctan(b^(1/2)*tan(d*x+c)^(1/2)/a^(1/2))/a^(7/2)/(a^2+b^2)/d+1/2*(a+b)*arctan(-1+2^(1/2)*tan(d*x+c)
^(1/2))/(a^2+b^2)/d*2^(1/2)+1/2*(a+b)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+1/4*(a-b)*ln(1-2^
(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(a^2+b^2)/d*2^(1/2)-1/4*(a-b)*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(a^
2+b^2)/d*2^(1/2)+2*(a^2-b^2)/a^3/d/tan(d*x+c)^(1/2)-2/5/a/d/tan(d*x+c)^(5/2)+2/3*b/a^2/d/tan(d*x+c)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.79, antiderivative size = 300, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 14, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3569, 3649, 3650, 3653, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ -\frac {2 b^{9/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{a^{7/2} d \left (a^2+b^2\right )}-\frac {(a+b) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {(a+b) \tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {2 \left (a^2-b^2\right )}{a^3 d \sqrt {\tan (c+d x)}}+\frac {(a-b) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {(a-b) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[1/(Tan[c + d*x]^(7/2)*(a + b*Tan[c + d*x])),x]

[Out]

-(((a + b)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d)) + ((a + b)*ArcTan[1 + Sqrt[2]*Sqrt
[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - (2*b^(9/2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(a^(7/2)*(
a^2 + b^2)*d) + ((a - b)*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) - ((a -
 b)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) - 2/(5*a*d*Tan[c + d*x]^(5/2
)) + (2*b)/(3*a^2*d*Tan[c + d*x]^(3/2)) + (2*(a^2 - b^2))/(a^3*d*Sqrt[Tan[c + d*x]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3569

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d)), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*t
an[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 + a^2*C)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x]
)^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[
e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2)) - a*C*(b*c*(m + 1)
 + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - b*C)*Tan[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 2)*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^
2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps

\begin {align*} \int \frac {1}{\tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))} \, dx &=-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 \int \frac {\frac {5 b}{2}+\frac {5}{2} a \tan (c+d x)+\frac {5}{2} b \tan ^2(c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))} \, dx}{5 a}\\ &=-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 \int \frac {-\frac {15}{4} \left (a^2-b^2\right )+\frac {15}{4} b^2 \tan ^2(c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx}{15 a^2}\\ &=-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2-b^2\right )}{a^3 d \sqrt {\tan (c+d x)}}-\frac {8 \int \frac {-\frac {15}{8} b \left (a^2-b^2\right )-\frac {15}{8} a^3 \tan (c+d x)-\frac {15}{8} b \left (a^2-b^2\right ) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{15 a^3}\\ &=-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2-b^2\right )}{a^3 d \sqrt {\tan (c+d x)}}-\frac {8 \int \frac {-\frac {15 a^3 b}{8}-\frac {15}{8} a^4 \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx}{15 a^3 \left (a^2+b^2\right )}-\frac {b^5 \int \frac {1+\tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{a^3 \left (a^2+b^2\right )}\\ &=-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2-b^2\right )}{a^3 d \sqrt {\tan (c+d x)}}-\frac {16 \operatorname {Subst}\left (\int \frac {-\frac {15 a^3 b}{8}-\frac {15 a^4 x^2}{8}}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{15 a^3 \left (a^2+b^2\right ) d}-\frac {b^5 \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} (a+b x)} \, dx,x,\tan (c+d x)\right )}{a^3 \left (a^2+b^2\right ) d}\\ &=-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2-b^2\right )}{a^3 d \sqrt {\tan (c+d x)}}-\frac {(a-b) \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac {\left (2 b^5\right ) \operatorname {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{a^3 \left (a^2+b^2\right ) d}+\frac {(a+b) \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac {2 b^{9/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{a^{7/2} \left (a^2+b^2\right ) d}-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2-b^2\right )}{a^3 d \sqrt {\tan (c+d x)}}+\frac {(a-b) \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a-b) \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a+b) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac {(a+b) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}\\ &=-\frac {2 b^{9/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{a^{7/2} \left (a^2+b^2\right ) d}+\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2-b^2\right )}{a^3 d \sqrt {\tan (c+d x)}}+\frac {(a+b) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a+b) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}\\ &=-\frac {(a+b) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a+b) \tan ^{-1}\left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {2 b^{9/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{a^{7/2} \left (a^2+b^2\right ) d}+\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {2}{5 a d \tan ^{\frac {5}{2}}(c+d x)}+\frac {2 b}{3 a^2 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^2-b^2\right )}{a^3 d \sqrt {\tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.68, size = 248, normalized size = 0.83 \[ \frac {-15 \left (\frac {2 \sqrt {2} a^2 (a+b) \left (\tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-\tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )\right )}{a^2+b^2}-\frac {\sqrt {2} a^2 (a-b) \left (\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )\right )}{a^2+b^2}+\frac {8 b^{9/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} \left (a^2+b^2\right )}-\frac {8 (a-b) (a+b)}{a \sqrt {\tan (c+d x)}}\right )-\frac {24 a}{\tan ^{\frac {5}{2}}(c+d x)}+\frac {40 b}{\tan ^{\frac {3}{2}}(c+d x)}}{60 a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Tan[c + d*x]^(7/2)*(a + b*Tan[c + d*x])),x]

[Out]

(-15*((2*Sqrt[2]*a^2*(a + b)*(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])
)/(a^2 + b^2) + (8*b^(9/2)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(a^(3/2)*(a^2 + b^2)) - (Sqrt[2]*a^2*
(a - b)*(Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x
]]))/(a^2 + b^2) - (8*(a - b)*(a + b))/(a*Sqrt[Tan[c + d*x]])) - (24*a)/Tan[c + d*x]^(5/2) + (40*b)/Tan[c + d*
x]^(3/2))/(60*a^2*d)

________________________________________________________________________________________

fricas [B]  time = 11.48, size = 8348, normalized size = 27.83 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(7/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

[-1/60*(60*sqrt(2)*((a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^5*cos(d*x + c)^4 - 2*(a^9 + 3*a^7*b^2 + 3*a^5*b^
4 + a^3*b^6)*d^5*cos(d*x + c)^2 + (a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^5)*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2
*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((a^4 - 2
*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)
*arctan(-((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 +
 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - sqrt(2)*((a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^
2*b^7 + b^9)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((
a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 +
4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^
2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sq
rt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4
 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4
 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(
d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x
 + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) - sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*
b^9 - b^11)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a
^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^9 + 2*a^7*b^2 - 2*a^3*b^6 - a*b^8)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4
*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2
*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*
a^2*b^2 + b^4)*d^4))^(3/4))/(a^4 - 2*a^2*b^2 + b^4)) + 60*sqrt(2)*((a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^5
*cos(d*x + c)^4 - 2*(a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^5*cos(d*x + c)^2 + (a^9 + 3*a^7*b^2 + 3*a^5*b^4
+ a^3*b^6)*d^5)*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4
)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8
)*d^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*arctan(((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*
a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) +
sqrt(2)*((a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2
+ 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*
b^6)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^
2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4)
)*sqrt(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((a^7
 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^
5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 +
b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) +
 (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) + sqrt(2)*((a^10*
b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*b^9 - b^11)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 +
 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^9 + 2*a^7*b^2 - 2*a^3*b^6 - a*b
^8)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2
*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))
*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4))/(a^4 - 2*a^2*b^2 + b^4)) + 15*sqrt(2
)*((a^5 + a^3*b^2)*d*cos(d*x + c)^4 - 2*(a^5 + a^3*b^2)*d*cos(d*x + c)^2 + (a^5 + a^3*b^2)*d - 2*((a^6*b + a^4
*b^3)*d^3*cos(d*x + c)^4 - 2*(a^6*b + a^4*b^3)*d^3*cos(d*x + c)^2 + (a^6*b + a^4*b^3)*d^3)*sqrt(1/((a^4 + 2*a^
2*b^2 + b^4)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 +
 b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^2 - a^2*b^4 +
b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*s
qrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^
2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4)
)*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x +
c))/cos(d*x + c)) - 15*sqrt(2)*((a^5 + a^3*b^2)*d*cos(d*x + c)^4 - 2*(a^5 + a^3*b^2)*d*cos(d*x + c)^2 + (a^5 +
 a^3*b^2)*d - 2*((a^6*b + a^4*b^3)*d^3*cos(d*x + c)^4 - 2*(a^6*b + a^4*b^3)*d^3*cos(d*x + c)^2 + (a^6*b + a^4*
b^3)*d^3)*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d
^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log
(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((a^7 - a^5
*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*c
os(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d
^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4
- 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c)) - 30*(b^4*cos(d*x + c)^4 - 2*b^4*cos(d*x + c)^2 + b^4)*sqrt(-b/
a)*log(-(6*a*b*cos(d*x + c)*sin(d*x + c) - (a^2 - b^2)*cos(d*x + c)^2 - b^2 - 4*(a^2*cos(d*x + c)^2 - a*b*cos(
d*x + c)*sin(d*x + c))*sqrt(-b/a)*sqrt(sin(d*x + c)/cos(d*x + c)))/(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b
^2)*cos(d*x + c)^2 + b^2)) + 8*(5*(a^3*b + a*b^3)*cos(d*x + c)^4 - 5*(a^3*b + a*b^3)*cos(d*x + c)^2 + 3*((6*a^
4 + a^2*b^2 - 5*b^4)*cos(d*x + c)^3 - 5*(a^4 - b^4)*cos(d*x + c))*sin(d*x + c))*sqrt(sin(d*x + c)/cos(d*x + c)
))/((a^5 + a^3*b^2)*d*cos(d*x + c)^4 - 2*(a^5 + a^3*b^2)*d*cos(d*x + c)^2 + (a^5 + a^3*b^2)*d), -1/60*(60*sqrt
(2)*((a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^5*cos(d*x + c)^4 - 2*(a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^
5*cos(d*x + c)^2 + (a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^5)*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3
*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt((a^4 - 2*a^2*b^2 + b^4)
/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*arctan(-((a^8
+ 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^
8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - sqrt(2)*((a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*d^
7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2
 + b^4)*d^4)) - (a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a
^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4
+ 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*
a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 +
b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2
*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*
x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c))*(1/((a^4
 + 2*a^2*b^2 + b^4)*d^4))^(3/4) - sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*b^9 - b^11)*d^7
*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2
+ b^4)*d^4)) - (a^9 + 2*a^7*b^2 - 2*a^3*b^6 - a*b^8)*d^5*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^
4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 +
 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*
d^4))^(3/4))/(a^4 - 2*a^2*b^2 + b^4)) + 60*sqrt(2)*((a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^5*cos(d*x + c)^4
 - 2*(a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^5*cos(d*x + c)^2 + (a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6)*d^5)
*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 -
 2*a^2*b^2 + b^4))*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*(1/((a^
4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*arctan(((a^8 + 2*a^6*b^2 - 2*a^2*b^6 - b^8)*d^4*sqrt((a^4 - 2*a^2*b^2 + b^4)/
((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + sqrt(2)*((a^8*b
 + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4
*a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*d^5*sqrt((
a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2
*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(((a^6 -
a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((a^7 - a^5*b^2 - a^
3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x +
c))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^
4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b
^2 + b^4)*sin(d*x + c))/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) + sqrt(2)*((a^10*b + 3*a^8*b^3 +
 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*b^9 - b^11)*d^7*sqrt((a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*
a^2*b^6 + b^8)*d^4))*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (a^9 + 2*a^7*b^2 - 2*a^3*b^6 - a*b^8)*d^5*sqrt((a
^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*
(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x +
 c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4))/(a^4 - 2*a^2*b^2 + b^4)) + 15*sqrt(2)*((a^5 + a^3*b
^2)*d*cos(d*x + c)^4 - 2*(a^5 + a^3*b^2)*d*cos(d*x + c)^2 + (a^5 + a^3*b^2)*d - 2*((a^6*b + a^4*b^3)*d^3*cos(d
*x + c)^4 - 2*(a^6*b + a^4*b^3)*d^3*cos(d*x + c)^2 + (a^6*b + a^4*b^3)*d^3)*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^
4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a
^4 - 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^2 - a^2*b^4 + b^6)*d^2*sqrt(1
/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4 + a*b^6)*d^3*sqrt(1/((a^4 + 2
*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2
*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*sqrt(sin(d*x
+ c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b^4)*sin(d*x + c))/cos(d*x + c
)) - 15*sqrt(2)*((a^5 + a^3*b^2)*d*cos(d*x + c)^4 - 2*(a^5 + a^3*b^2)*d*cos(d*x + c)^2 + (a^5 + a^3*b^2)*d - 2
*((a^6*b + a^4*b^3)*d^3*cos(d*x + c)^4 - 2*(a^6*b + a^4*b^3)*d^3*cos(d*x + c)^2 + (a^6*b + a^4*b^3)*d^3)*sqrt(
1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4
 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*a^2*b^2 + b^4))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((a^6 - a^4*b^
2 - a^2*b^4 + b^6)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((a^7 - a^5*b^2 - a^3*b^4
+ a*b^6)*d^3*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5)*d*cos(d*x + c))*sq
rt((a^4 + 2*a^2*b^2 + b^4 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(1/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(a^4 - 2*
a^2*b^2 + b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(1/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (a^4 - 2*a^2*b^2 + b
^4)*sin(d*x + c))/cos(d*x + c)) + 120*(b^4*cos(d*x + c)^4 - 2*b^4*cos(d*x + c)^2 + b^4)*sqrt(b/a)*arctan((2*a^
2*b*cos(d*x + c)^2*sin(d*x + c) + a*b^2*cos(d*x + c) + (a^3 - a*b^2)*cos(d*x + c)^3)*sqrt(b/a)*sqrt(sin(d*x +
c)/cos(d*x + c))/(2*a*b^2*cos(d*x + c)^3 - 2*a*b^2*cos(d*x + c) - (b^3 + (a^2*b - b^3)*cos(d*x + c)^2)*sin(d*x
 + c))) + 8*(5*(a^3*b + a*b^3)*cos(d*x + c)^4 - 5*(a^3*b + a*b^3)*cos(d*x + c)^2 + 3*((6*a^4 + a^2*b^2 - 5*b^4
)*cos(d*x + c)^3 - 5*(a^4 - b^4)*cos(d*x + c))*sin(d*x + c))*sqrt(sin(d*x + c)/cos(d*x + c)))/((a^5 + a^3*b^2)
*d*cos(d*x + c)^4 - 2*(a^5 + a^3*b^2)*d*cos(d*x + c)^2 + (a^5 + a^3*b^2)*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \tan \left (d x + c\right ) + a\right )} \tan \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(7/2)/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((b*tan(d*x + c) + a)*tan(d*x + c)^(7/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.23, size = 369, normalized size = 1.23 \[ -\frac {2 b^{5} \arctan \left (\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) b}{\sqrt {a b}}\right )}{d \,a^{3} \left (a^{2}+b^{2}\right ) \sqrt {a b}}-\frac {2}{5 a d \tan \left (d x +c \right )^{\frac {5}{2}}}+\frac {2}{a d \sqrt {\tan \left (d x +c \right )}}-\frac {2 b^{2}}{d \,a^{3} \sqrt {\tan \left (d x +c \right )}}+\frac {2 b}{3 a^{2} d \tan \left (d x +c \right )^{\frac {3}{2}}}+\frac {b \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d \left (a^{2}+b^{2}\right )}+\frac {b \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d \left (a^{2}+b^{2}\right )}+\frac {b \sqrt {2}\, \ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )}{4 d \left (a^{2}+b^{2}\right )}+\frac {a \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d \left (a^{2}+b^{2}\right )}+\frac {a \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d \left (a^{2}+b^{2}\right )}+\frac {a \sqrt {2}\, \ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )}{4 d \left (a^{2}+b^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/tan(d*x+c)^(7/2)/(a+b*tan(d*x+c)),x)

[Out]

-2/d/a^3*b^5/(a^2+b^2)/(a*b)^(1/2)*arctan(tan(d*x+c)^(1/2)*b/(a*b)^(1/2))-2/5/a/d/tan(d*x+c)^(5/2)+2/a/d/tan(d
*x+c)^(1/2)-2/d/a^3/tan(d*x+c)^(1/2)*b^2+2/3*b/a^2/d/tan(d*x+c)^(3/2)+1/2/d/(a^2+b^2)*b*2^(1/2)*arctan(1+2^(1/
2)*tan(d*x+c)^(1/2))+1/2/d/(a^2+b^2)*b*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))+1/4/d/(a^2+b^2)*b*2^(1/2)*l
n((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+1/2/d/(a^2+b^2)*a*2^(1/2)*a
rctan(1+2^(1/2)*tan(d*x+c)^(1/2))+1/2/d/(a^2+b^2)*a*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))+1/4/d/(a^2+b^2
)*a*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 223, normalized size = 0.74 \[ -\frac {\frac {120 \, b^{5} \arctan \left (\frac {b \sqrt {\tan \left (d x + c\right )}}{\sqrt {a b}}\right )}{{\left (a^{5} + a^{3} b^{2}\right )} \sqrt {a b}} - \frac {15 \, {\left (2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - \sqrt {2} {\left (a - b\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt {2} {\left (a - b\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )}}{a^{2} + b^{2}} - \frac {8 \, {\left (5 \, a b \tan \left (d x + c\right ) + 15 \, {\left (a^{2} - b^{2}\right )} \tan \left (d x + c\right )^{2} - 3 \, a^{2}\right )}}{a^{3} \tan \left (d x + c\right )^{\frac {5}{2}}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(7/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/60*(120*b^5*arctan(b*sqrt(tan(d*x + c))/sqrt(a*b))/((a^5 + a^3*b^2)*sqrt(a*b)) - 15*(2*sqrt(2)*(a + b)*arct
an(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a + b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan
(d*x + c)))) - sqrt(2)*(a - b)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + sqrt(2)*(a - b)*log(-sqrt(
2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1))/(a^2 + b^2) - 8*(5*a*b*tan(d*x + c) + 15*(a^2 - b^2)*tan(d*x + c)^2
 - 3*a^2)/(a^3*tan(d*x + c)^(5/2)))/d

________________________________________________________________________________________

mupad [B]  time = 6.91, size = 4207, normalized size = 14.02 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(tan(c + d*x)^(7/2)*(a + b*tan(c + d*x))),x)

[Out]

atan(((tan(c + d*x)^(1/2)*(64*a^21*b^11*d^5 - 32*a^27*b^5*d^5) + (-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1
/2)*((-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(tan(c + d*x)^(1/2)*(512*a^22*b^12*d^7 - 448*a^28*b^6*d^
7 + 128*a^30*b^4*d^7 + 64*a^32*b^2*d^7) + (-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(512*a^24*b^11*d^8
- tan(c + d*x)^(1/2)*(-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(512*a^27*b^9*d^9 + 512*a^29*b^7*d^9 - 5
12*a^31*b^5*d^9 - 512*a^33*b^3*d^9) + 512*a^26*b^9*d^8 - 128*a^28*b^7*d^8 + 256*a^30*b^5*d^8 + 384*a^32*b^3*d^
8)) - 128*a^21*b^12*d^6 + 512*a^23*b^10*d^6 + 32*a^29*b^4*d^6 + 32*a^31*b^2*d^6))*(-1i/(4*(b^2*d^2 - a^2*d^2 +
 a*b*d^2*2i)))^(1/2)*1i + (tan(c + d*x)^(1/2)*(64*a^21*b^11*d^5 - 32*a^27*b^5*d^5) - (-1i/(4*(b^2*d^2 - a^2*d^
2 + a*b*d^2*2i)))^(1/2)*(512*a^23*b^10*d^6 - 128*a^21*b^12*d^6 - (-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1
/2)*(tan(c + d*x)^(1/2)*(512*a^22*b^12*d^7 - 448*a^28*b^6*d^7 + 128*a^30*b^4*d^7 + 64*a^32*b^2*d^7) - (-1i/(4*
(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(tan(c + d*x)^(1/2)*(-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*
(512*a^27*b^9*d^9 + 512*a^29*b^7*d^9 - 512*a^31*b^5*d^9 - 512*a^33*b^3*d^9) + 512*a^24*b^11*d^8 + 512*a^26*b^9
*d^8 - 128*a^28*b^7*d^8 + 256*a^30*b^5*d^8 + 384*a^32*b^3*d^8)) + 32*a^29*b^4*d^6 + 32*a^31*b^2*d^6))*(-1i/(4*
(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*1i)/((tan(c + d*x)^(1/2)*(64*a^21*b^11*d^5 - 32*a^27*b^5*d^5) + (-1i/
(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*((-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(tan(c + d*x)^(1
/2)*(512*a^22*b^12*d^7 - 448*a^28*b^6*d^7 + 128*a^30*b^4*d^7 + 64*a^32*b^2*d^7) + (-1i/(4*(b^2*d^2 - a^2*d^2 +
 a*b*d^2*2i)))^(1/2)*(512*a^24*b^11*d^8 - tan(c + d*x)^(1/2)*(-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*
(512*a^27*b^9*d^9 + 512*a^29*b^7*d^9 - 512*a^31*b^5*d^9 - 512*a^33*b^3*d^9) + 512*a^26*b^9*d^8 - 128*a^28*b^7*
d^8 + 256*a^30*b^5*d^8 + 384*a^32*b^3*d^8)) - 128*a^21*b^12*d^6 + 512*a^23*b^10*d^6 + 32*a^29*b^4*d^6 + 32*a^3
1*b^2*d^6))*(-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) - (tan(c + d*x)^(1/2)*(64*a^21*b^11*d^5 - 32*a^27
*b^5*d^5) - (-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(512*a^23*b^10*d^6 - 128*a^21*b^12*d^6 - (-1i/(4*
(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(tan(c + d*x)^(1/2)*(512*a^22*b^12*d^7 - 448*a^28*b^6*d^7 + 128*a^30*
b^4*d^7 + 64*a^32*b^2*d^7) - (-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(tan(c + d*x)^(1/2)*(-1i/(4*(b^2
*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(512*a^27*b^9*d^9 + 512*a^29*b^7*d^9 - 512*a^31*b^5*d^9 - 512*a^33*b^3*d^
9) + 512*a^24*b^11*d^8 + 512*a^26*b^9*d^8 - 128*a^28*b^7*d^8 + 256*a^30*b^5*d^8 + 384*a^32*b^3*d^8)) + 32*a^29
*b^4*d^6 + 32*a^31*b^2*d^6))*(-1i/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + 64*a^22*b^9*d^4))*(-1i/(4*(b^2
*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*2i + (log(((tan(c + d*x)^(1/2)*(64*a^21*b^11*d^5 - 32*a^27*b^5*d^5) - ((-
1/(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2))^(1/2)*(512*a^23*b^10*d^6 - 128*a^21*b^12*d^6 - ((-1/(b^2*d^2*1i - a^2
*d^2*1i + 2*a*b*d^2))^(1/2)*(tan(c + d*x)^(1/2)*(512*a^22*b^12*d^7 - 448*a^28*b^6*d^7 + 128*a^30*b^4*d^7 + 64*
a^32*b^2*d^7) - ((-1/(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2))^(1/2)*((tan(c + d*x)^(1/2)*(-1/(b^2*d^2*1i - a^2*d
^2*1i + 2*a*b*d^2))^(1/2)*(512*a^27*b^9*d^9 + 512*a^29*b^7*d^9 - 512*a^31*b^5*d^9 - 512*a^33*b^3*d^9))/2 + 512
*a^24*b^11*d^8 + 512*a^26*b^9*d^8 - 128*a^28*b^7*d^8 + 256*a^30*b^5*d^8 + 384*a^32*b^3*d^8))/2))/2 + 32*a^29*b
^4*d^6 + 32*a^31*b^2*d^6))/2)*(-1/(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2))^(1/2))/2 - 32*a^22*b^9*d^4)*(-1/(b^2*
d^2*1i - a^2*d^2*1i + 2*a*b*d^2))^(1/2))/2 - log(- (tan(c + d*x)^(1/2)*(64*a^21*b^11*d^5 - 32*a^27*b^5*d^5) +
(-1/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*((-1/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*(ta
n(c + d*x)^(1/2)*(512*a^22*b^12*d^7 - 448*a^28*b^6*d^7 + 128*a^30*b^4*d^7 + 64*a^32*b^2*d^7) + (-1/(4*(b^2*d^2
*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*(512*a^24*b^11*d^8 - tan(c + d*x)^(1/2)*(-1/(4*(b^2*d^2*1i - a^2*d^2*1i
+ 2*a*b*d^2)))^(1/2)*(512*a^27*b^9*d^9 + 512*a^29*b^7*d^9 - 512*a^31*b^5*d^9 - 512*a^33*b^3*d^9) + 512*a^26*b^
9*d^8 - 128*a^28*b^7*d^8 + 256*a^30*b^5*d^8 + 384*a^32*b^3*d^8)) - 128*a^21*b^12*d^6 + 512*a^23*b^10*d^6 + 32*
a^29*b^4*d^6 + 32*a^31*b^2*d^6))*(-1/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) - 32*a^22*b^9*d^4)*(-1/(
4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) + ((2*tan(c + d*x)^2*(a^2 - b^2))/a^3 - 2/(5*a) + (2*b*tan(c +
 d*x))/(3*a^2))/(d*tan(c + d*x)^(5/2)) + (atan((((tan(c + d*x)^(1/2)*(64*a^21*b^11*d^5 - 32*a^27*b^5*d^5) + ((
-a^7*b^9)^(1/2)*(512*a^23*b^10*d^6 - 128*a^21*b^12*d^6 + 32*a^29*b^4*d^6 + 32*a^31*b^2*d^6 + ((tan(c + d*x)^(1
/2)*(512*a^22*b^12*d^7 - 448*a^28*b^6*d^7 + 128*a^30*b^4*d^7 + 64*a^32*b^2*d^7) + ((-a^7*b^9)^(1/2)*(512*a^24*
b^11*d^8 + 512*a^26*b^9*d^8 - 128*a^28*b^7*d^8 + 256*a^30*b^5*d^8 + 384*a^32*b^3*d^8 - (tan(c + d*x)^(1/2)*(-a
^7*b^9)^(1/2)*(512*a^27*b^9*d^9 + 512*a^29*b^7*d^9 - 512*a^31*b^5*d^9 - 512*a^33*b^3*d^9))/(a^7*d*(a^2 + b^2))
))/(a^7*d*(a^2 + b^2)))*(-a^7*b^9)^(1/2))/(a^7*d*(a^2 + b^2))))/(a^7*d*(a^2 + b^2)))*(-a^7*b^9)^(1/2)*1i)/(a^7
*d*(a^2 + b^2)) + ((tan(c + d*x)^(1/2)*(64*a^21*b^11*d^5 - 32*a^27*b^5*d^5) - ((-a^7*b^9)^(1/2)*(512*a^23*b^10
*d^6 - 128*a^21*b^12*d^6 + 32*a^29*b^4*d^6 + 32*a^31*b^2*d^6 - ((tan(c + d*x)^(1/2)*(512*a^22*b^12*d^7 - 448*a
^28*b^6*d^7 + 128*a^30*b^4*d^7 + 64*a^32*b^2*d^7) - ((-a^7*b^9)^(1/2)*(512*a^24*b^11*d^8 + 512*a^26*b^9*d^8 -
128*a^28*b^7*d^8 + 256*a^30*b^5*d^8 + 384*a^32*b^3*d^8 + (tan(c + d*x)^(1/2)*(-a^7*b^9)^(1/2)*(512*a^27*b^9*d^
9 + 512*a^29*b^7*d^9 - 512*a^31*b^5*d^9 - 512*a^33*b^3*d^9))/(a^7*d*(a^2 + b^2))))/(a^7*d*(a^2 + b^2)))*(-a^7*
b^9)^(1/2))/(a^7*d*(a^2 + b^2))))/(a^7*d*(a^2 + b^2)))*(-a^7*b^9)^(1/2)*1i)/(a^7*d*(a^2 + b^2)))/(64*a^22*b^9*
d^4 + ((tan(c + d*x)^(1/2)*(64*a^21*b^11*d^5 - 32*a^27*b^5*d^5) + ((-a^7*b^9)^(1/2)*(512*a^23*b^10*d^6 - 128*a
^21*b^12*d^6 + 32*a^29*b^4*d^6 + 32*a^31*b^2*d^6 + ((tan(c + d*x)^(1/2)*(512*a^22*b^12*d^7 - 448*a^28*b^6*d^7
+ 128*a^30*b^4*d^7 + 64*a^32*b^2*d^7) + ((-a^7*b^9)^(1/2)*(512*a^24*b^11*d^8 + 512*a^26*b^9*d^8 - 128*a^28*b^7
*d^8 + 256*a^30*b^5*d^8 + 384*a^32*b^3*d^8 - (tan(c + d*x)^(1/2)*(-a^7*b^9)^(1/2)*(512*a^27*b^9*d^9 + 512*a^29
*b^7*d^9 - 512*a^31*b^5*d^9 - 512*a^33*b^3*d^9))/(a^7*d*(a^2 + b^2))))/(a^7*d*(a^2 + b^2)))*(-a^7*b^9)^(1/2))/
(a^7*d*(a^2 + b^2))))/(a^7*d*(a^2 + b^2)))*(-a^7*b^9)^(1/2))/(a^7*d*(a^2 + b^2)) - ((tan(c + d*x)^(1/2)*(64*a^
21*b^11*d^5 - 32*a^27*b^5*d^5) - ((-a^7*b^9)^(1/2)*(512*a^23*b^10*d^6 - 128*a^21*b^12*d^6 + 32*a^29*b^4*d^6 +
32*a^31*b^2*d^6 - ((tan(c + d*x)^(1/2)*(512*a^22*b^12*d^7 - 448*a^28*b^6*d^7 + 128*a^30*b^4*d^7 + 64*a^32*b^2*
d^7) - ((-a^7*b^9)^(1/2)*(512*a^24*b^11*d^8 + 512*a^26*b^9*d^8 - 128*a^28*b^7*d^8 + 256*a^30*b^5*d^8 + 384*a^3
2*b^3*d^8 + (tan(c + d*x)^(1/2)*(-a^7*b^9)^(1/2)*(512*a^27*b^9*d^9 + 512*a^29*b^7*d^9 - 512*a^31*b^5*d^9 - 512
*a^33*b^3*d^9))/(a^7*d*(a^2 + b^2))))/(a^7*d*(a^2 + b^2)))*(-a^7*b^9)^(1/2))/(a^7*d*(a^2 + b^2))))/(a^7*d*(a^2
 + b^2)))*(-a^7*b^9)^(1/2))/(a^7*d*(a^2 + b^2))))*(-a^7*b^9)^(1/2)*2i)/(a^7*d*(a^2 + b^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \tan {\left (c + d x \right )}\right ) \tan ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)**(7/2)/(a+b*tan(d*x+c)),x)

[Out]

Integral(1/((a + b*tan(c + d*x))*tan(c + d*x)**(7/2)), x)

________________________________________________________________________________________